| 
  Prof. D.K. Chaturvedi  
DayalBagh Educational Institute | 
  
  
  
 
  Dayalbagh Educational Institute Soft computing Engineering Laboratory 
  
(DEISEL)  
 
Development of Generlaized Neuron and its variations:
- Original Implementation:  Generalized Neuron (GN) model  c-code
  (GN.c) 
-  GN Variations:
 
- GN Model0 (GN_model0.c) output = osigma*wsigma + opi*wpi  
 
- GN Model1 (GN_model1.c) output = osigma*wsigma + opi * (1-wsigma)
 
- GN Model2  (GN_model2.c) output = (Osigma^wsigma)*  (opi  ^ (1-wsigma))
 
- GN Model3 (GN_model3.c) output = osigma * wsigma + (osigma+opi-osigma*opi)*(1- wsigma)
 
- GN Model4  (GN_model4.c) output = (osigma ^ wsigma) *  ((osigma+opi-  osigma*opi)^(1-wsigma))
 
- GN Model5 (GN_model5.c) output = sqrt(osigma*opi)*wsigma + (osigma+opi)*(1- wsigma)/2.0
 
-  GN Model6 (GN_model6.c) output = sqrt(osigma*opi)^(1- wsigma)* (osigma+opi)/2.0) ^ (1- wsigma)
 
 -  GN  Model7 (GN_model7.c)
 
- Revision: Generlaized  Matlab ver.  6.5 Code  GN1.m
 
-  Benchmark Testing:  Benchmark.m
 
 - Parity Problem
 
- Voting  Problem 
 
-  Spiral  Problem
 
-  Mackey Glass  Problem
 
 
 - GN Applications in:
 
 
 -  Machine Modeling
 
 -  Power System Control
 
 -  Electrical Load Forecasting 
 
  -  Channel Equalization
 
- Robotic Control
 
 - Air craft Landing Control